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Abstract

3D beamforming is a promising approach for interference coordination in cellular networks
which brings significant improvements in comparison with conventional 2D beamforming
techniques. This paper investigates the problem of joint beamforming design and tilt angle
adaptation of the BS antenna array for maximizing energy efficiency (EE) in downlink of
multi-cell multi-user coordinated cellular networks. An iterative algorithm based on frac-
tional programming approach is introduced to solve the resulting non-convex optimization
problem. In each iteration, users are clustered based on their elevation angle. Then, op-
timization of the tilt angle is carried out through a reduced complexity greedy search to
find the best tilt angle for a given placement of the users. Numerical results show that the
proposed algorithm achieves higher EE compared to the 2D beamforming techniques.

Keywords: 3D beamforming (3DBF), energy efficiency, tilt angle optimization, vertical
beamforming, convex optimization, coordinated beamforming, fractional programming, 2D
beamforming.

1. Introduction

Tilt angle adaptation which is also known as three dimensional beamforming (3DBF),
full dimension multiple-input multiple-output (FD-MIMO) or vertical beamforming is a
promising technology for interference management and performance improvement in fifth
generation (5G) cellular networks [1, 2]. In this technique by deploying active antenna
systems (AAS) at the base station (BS) of cellular networks, it is possible to dynamically
adapt the antenna tilt angle in each transmission interval [3]. This can be done by modifying
parameters of symmetrical 3D pattern introduced in [4]. The antenna arrays radiates a
fan-shaped beam with a large half power beam width (HPBW) in horizontal plane, while
radiating a sharp beam with a small HPBW in the vertical plane which prevents signal
from leaking to adjacent cells. In contrast to the horizontal plane in which the direction of
antenna main lobe is fixed (since the BS orientation is fixed for each sector), the antenna
main lobe in the vertical plane can be steered to a desired direction by changing the tilt angle
of the BS’s antenna array [2]. To this end, we need information about users’ locations and
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angle of arrival (AoA) at the BS. This tilt angle adjustment can improve some performance
metrics such as spectral efficiency (SE), coverage probability or energy efficiency (EE) [1, 2].

Most of the previous works on 3DBF study the problem of maximizing of the spec-
tral efficiency in various scenarios. In [5] a game theory-based approach is proposed that
maximizes the sum SE of a multi-cell network. In addition the authors approximate the
signal-to-interference-plus-noise ratio (SINR) by its asymptotic value when the number of
the BS antennas goes to infinity. In [6, 7, 8] the authors extract conditional ergodic sum
SE of the network in terms of the BS antenna array tilt angle and then approximate it
with complicated mathematical expressions. Hence the optimum tilt angles are found using
exhaustive search over different possible tilt angles.

In general there are two 3DBF strategies: passive and active. In the passive 3DBF,
the antenna pattern cannot be dynamically changed, and thus the antenna array tilt angle
is fixed during several transmission intervals. This technique is suitable for applications
like self organizing networks [9]. However in the active 3DBF, the antenna pattern can be
dynamically changed i.e. the tilt angle is optimized by utilizing instantaneous user’s location
information and AoA in each transmission interval [2, 3]. Thus, information about the users’
locations is playing a vital role in designing of the 3DBF technique. The users’ locations also
can be modeled with the help of stochastic geometry (SG) [3, 9, 10]. To this end the users’
locations is modeled by a uniform distribution and the BSs’ are assumed to be located on the
vertices of a hexagonal grid [10]. In addition, the BSs’ locations can also be modeled with
Poisson Point Process (PPP) [9]. Since the location of the users is a slow varying parameter,
it can be estimated almost exactly and the assumption of knowing these informations is a
reasonable assumption [5, 11]. The subject of AoA estimation is well studied in literature
[12]. Also there are some valuable works which concern with AoA estimation using novel
low energy consuming machine learning approaches such as Bayesian compressive sensing
algorithms [13, 14]. Here similar to [3, 5, 8, 11] we assume the information of the AoA of
the users are accurately available at the BSs.

It is shown that the active 3DBF can achieve higher performance compared with the
passive 3DBF since it adapts the antenna pattern to the instantaneous location of the users
instead of using an average location of the users [2, 3]. The problem of maximizing the sum
SE in the active and passive 3DBF for a single cell network and two scenarios of single-user
and multi-user is presented in [3]. Although in [3] potential of the 3DBF in performance
improvement and advantage of active 3DBF over passive 3DBF are well studied, however
because of the single cell arrangement the interference management property of the 3DBF
is not fully exploited.

Although SE is a very important performance metric in the wireless networks, recently
EE is also becoming more important from the network service provider’s point of view. The
3DBF is one of the techniques that have been proposed to facilitate energy efficient commu-
nication in next generation of cellular networks. In this technique, by proper managing of
interference and reducing the transmit power, the EE can be increased [2]. In spite of this
fact, the problem of EE maximization by utilizing 3DBF has not been thoroughly investi-
gated in the literature. In [9] by exploiting 3DBF, optimization of the sum EE in a two tier
heterogeneous network (HetNet) is addressed.

2



In this paper, we investigate the problem of joint beamforming and tilt angle optimization
at the BS antenna array for maximizing the total EE in a multi-cell multi-user network. In
fact, on contrary to the previous works on 3DBF which have considered ergodic sum SE
averaged over the users’ locations, we investigate maximizing the total EE in a more realistic
system with information on the users’ locations in the BS. In addition, it is worthwhile
to note that in all previous works simple linear beamforming such as eigen beamforming
or zero-forcing beamforming were considered while we design the optimum beamforming
vectors through a non-linear optimization problem. To the best of our knowledge, there is
no similar work which jointly design beamfroming vectors and optimize tilt angle.

In addition, in our scenario the BSs cooperate with each other and share their channel
vectors to each user. The objective function is total instantaneous EE subject to sum
transmit power constraint at the BS. The resulting optimization problem is non-convex and
therefore, a fractional programming approach is employed to convert it to a convex problem.
To convexify this problem, lemma 1 is introduced and then to solve the convex problem using
block coordinate descent method, theorem 1 is introduced. Also to reduce the complexity of
searching for finding the optimal tilt angle, the clustering algorithm is proposed in theorem
2.

Although the new problem is convex in terms of the beamforming vectors, it is still non-
convex in terms of the tilt angle. To solve this problem, we divide the users into clusters and
then in each cluster the optimum beamforming vectors are calculated. Finally, the optimum
tilt angle is found according to the cluster in which the beamforming vectors maximize
the total instantaneous EE. It will be shown that the optimal beamforming vectors are
dependent on both users’ elevation angle and channel gains. Simulation results demonstrate
that our method outperforms the conventional 2D beamforming in which the antenna array
pattern is omnidirectional and only precoding vectors are designed.

Rest of the paper is organized as follows. In Section 2, the system model and problem
formulation are introduced. In Section 3, the proposed algorithm for solving the optimization
problem is presented. In Section 4, the clustering algorithm is introduced. Simulation results
are presented in Section 5. Finally, Section 6 concludes the paper.

In the paper scalars are denoted by lower-case letters. Vectors and matrices are denoted
by bold-face lower-case and upper-case letters, respectively. ≺ stands for the generalized
inequality. (.)H is the complex conjugate transpose. E {.} denotes statistical expectation
and ||.|| is the Euclidean distance (also known as L2−norm). also (.)∗ represents the complex
conjugate norm. IM is the Identity matrix of size M and CN is the N−dimensional complex
vector space. In addition, a list of all variables that are used in our paper is given in table
1.

2. System Model

We consider a multi-cell network consisting of L cells. Each cell has K users that are
uniformly distributed over the cell coverage region and a BS equipped with a linear antenna
array consisting of M active elements. Each user is only served by its own cell’s BS.
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Parameter Description

θj, φj Tilt and boresight angles of the j-th BS respectively.
SLLel, SLLaz Side lobe levels in the elevation and azimuth domain respec-

tively.
xi Transmitted signal vector of the i-th BS.
ωin, din, yin Beamforming vector, data symbol and received signal of the

n-th user in the i-th cell.
gijm, βijm Channel vector and large scale factor between the m-th user

in the j-th cell and the i-th BS.
θ3dB, φ3dB Half power beamwidth of the elevation and azimuth patterns,

respectively.
θijk, φijk AoA of the k-th user in the j-th cell and the i-th BS
Rjm Instantaneous rate of the m-th user in the j-th cell.
Rmax Maximum rate achievable if each user receives maximum

power of its serving BS and no interference exists.
W ,θ Collection of all beamforming vectors and tilt angle of all BSs.
P, Pc, P0 Maximum transmit power available at the BS, RF-chain and

constant power consumption of the BS site, respectively.
ξ Power amplifier inefficiency
M,L,K The number of antennas at the BS, number of cells and the

number of the users in each cell.
η Energy efficiency variable.
ε, δ Thresholds for stop criterion of the inner and outer layer al-

gorithms.

d̃jm, µjm, sjm, ejm Estimated symbol, filter coefficient, slack variable and symbol
estimation error at the UE of the m-th user in the j-th cell

Table 1: List of all parameters throughout the paper.

The user equipment’s (UE’s) antenna pattern is assumed to be isotropic and the 3D
pattern of the BS antennas is modeled as [4]

α(θBS,i) = Gmax −min

[
12
(

φ
φ3dB

)2
, SLLaz

]
−min

[
12
(
θBS,i−θijk

θ3dB

)2
, SLLel

]
. (1)

where as depicted in Fig. 1, θBS,i is the tilt angle of the i-th BS which is defined as the angle
between the horizon and the main lobe of vertical pattern of the BS antenna array. θijk is
the vertical AoA of the k-th user in the j-th cell to the i-th BS. In addition φ = φBS,i−φijk is
the horizontal angle difference between boresight of the i-th BS’s antenna and the horizontal
AoA of the k-th user in the j-th cell to the i-th BS. It should be noted that φBS,i is added
to the generic model in [4] to suitably encompass the base stations with nonzero boresight
angle. Furthermore, SLLaz = 25 dB and SLLel = 20 dB are side lobe levels in the azimuth
and elevation planes, respectively. Also φ3dB = 65◦ and θ3dB = 6◦ are HPBWs in the
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azimuth and elevation planes, respectively [7]. For a conventional 2D beamforming system,
the array’s gain in the vertical plane is ignored and only horizontal gain and the first constant
term is considered.

During the signal transmission in the downlink, each BS broadcasts its signal to all users.
This signal is obtained by multiplying the users’ symbols in the corresponding beamforming
vectors. Hence, the transmit signal from the i-th BS is obtained as follows

xi =
K∑
n=1

ωindin (2)

where ωin ∈ CM×1 and din are the beamforming vector and data symbol of the n-th user in
the i-th cell, respectively. Moreover, the symbols din are assumed to be uncorrelated with
E{|din|2} = 1. The received signal of the m-th user in the j-th cell can be written as

yjm =
L∑
i=1

√
α (θBS,i)g

H
ijmxi =

L∑
i=1

K∑
n=1

√
α (θBS,i)g

H
ijmωindin + njm

=
√
α (θBS,j)g

H
jjmωjmdjm︸ ︷︷ ︸

desired

+
L∑
i=1
(i,n)

K∑
n=1
6=(j,m)

√
α (θBS,i)g

H
ijmωindin

︸ ︷︷ ︸
interference

+ njm︸︷︷︸
noise

,
(3)

where gijm ∼ CN (0, βijmIM) is the channel vector between the m-th user in the j-cell
and the BS in the i-cell. βijm is the large scale fading factor that includes both path-loss
and shadow fading effects. The noise term njm is a circularly symmetric complex gaussian
random variable with zero mean and normalized variance i.e. E{|njm|2} = 1. Instantaneous
rate of the m-th user in the j-th cell can be written as

R̂jm = log2

1 +
α (θBS,j)

∣∣gHjjmωjm∣∣2
L∑
i=1
(i,n)

K∑
n=1
6=(j,m)

α (θBS,i)
∣∣gHijmωin∣∣2 + 1

 . (4)

Using logarithm in base e, we have Rjm = ln(1 + SINR) =
R̂jm

ln 2
. The overall EE of the

network is defined as the total weighted sum SE divided by the total energy consumption
in the network as follows

EE =

∑
j,m

bjmRjm

ξ
∑
j,m

‖ωjm‖2 +MLPc + LP0

= f (W ,θ) . (5)

In (5), W is the collection of all beamforming vectors and θ = [θBS,1, θBS,2, ..., θBS,L] is
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the vector containing the tilt angles of all BSs. bjm is weight of the m-th user in the j-th
cell and in fact it indicates each user’s priority with respect to other users. Pc is power
consumption of an active RF-chain and P0 is constant power consumption for maintenance
of BS equipments [17]. ξ ≥ 0 is a constant that accounts for the power amplifiers’ inefficiency.
Now we can formulate optimization problem of the network as follow

arg max
W ,θ

f (W ,θ) =
f1 (W ,θ)

f2 (W ,θ)
,

subject to
K∑
m=1

‖ωjm‖2 6 P ∀j, j = 1, 2, ..., L,

01×L ≺ θ ≺ 90o × [1, 1, ..., 1]1×L.

(6)

where f1(W ) =
∑
j,m

bjmRjm and f2(W ) = ξ
∑
j,m

‖ωjm‖2 +MLPc + LP0 which are numerator

and denominator of equation (6). The first constraint in (6) is the maximum transmit power
available at the BS and the second constrain is the dynamic range of the tilt angles.
It is possible to show that the following bounds are true for the objective function in (6)

0 < f1 (W ,θ) 6 Rmax

f2 (W ,θ) >MLPc + LP0

f2 (W ,θ) 6 LP +MLPc + LP0

Rmax =
L∑
j=1

K∑
m=1

log2

(
1 +

P‖gHjjm‖2
1

) (7)

where Rmax is the maximum rate for the case that the maximum power is allocated for each
user and no interference exists.

3. The EE Maximization Problem Solution

Since the objective function in (6) is fractional and non-convex, fractional programming
technique is applied to solve this problem [18]. First consider the following equation

F (η) = max
(W ,θ)∈D

{f1 (W ,θ)− ηf2 (W ,θ)} (8)

where D = {(W, θ)|
K∑
m=1

‖ωjm‖2 6 P ∀j, 01×L ≺ θ ≺ 90o × [1, 1, ..., 1]1×L} is feasible set of

the problem. It is shown that F (η) in equation (8) has the following properties [18]

(a) F (η) is convex over R,

(b) F (η) is continuous over R,

(c) F (η) is strictly decreasing,
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Figure 1: Multi-cell setup with three cells and illustration of 3D angles.

(d) The equation F (η) = 0 always has a unique solution.

Thus, we can conclude that the following statements are equivalent [18]:

(a) max
(W ,θ)∈D

f (W ,θ) = max
(W ,θ)∈D

f1(W ,θ)
f2(W ,θ)

= η

(b) F (η) = max
(W ,θ)∈D

{f1 (W ,θ)− ηf2 (W ,θ)} = 0.

In other words, solving univariate equation F (η) = 0 is equivalent to the maximization
problem in (6). It means that if one can find an η such that the optimum value of problem
(8) is zero, then this optimum value will be also a solution to the problem (6). To solve it,
the problem can be divided into two parts or layers. The so-called outer layer searches for
the optimum value of η while the inner layer solves the equation (9) for each value of η to
find the optimum beamforming vectors and tilt angle.

For solving the univariate equation (8), we can employ the bisection algorithm as follows
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Algorithm 1 Outer Layer Algorithm

1: Initialize: ηmin = 0, ηmax = Rmax

MLPc+LP0
, ε = 10−3

2: while (|ηmax − ηmin| > ε) do

3: assign η = ηmin+ηmax

2
, now solve (9) to find the optimum values of (W opt,θopt) and

calculate F (η).

4: if (F (η) > 0 ) then ηmax = η

5: else ηmin = η
end while

As we see in algorithm 1, for each value of η, the problem (9) needs to be solved. This
optimization problem can also be written as

arg max
W ,θ

G (W ,θ) =

(∑
j,m

bjmRjm − ηξ
∑
j,m

‖ωjm‖
2

)

subject to
K∑
m=1

‖ωjm‖2 6 P ∀j, j = 1, 2, ..., L

01×L ≺ θ ≺ 90o × [1, 1, ..., 1]1×L

(9)

In order to solve (9), we use the method introduced in [20]. According to this method, the
data rate of users Rjm can be written in terms of achievable minimum mean square error
(MMSE) of estimated data symbols in the UE’s. This can be done by introducing optimum
filter variables µjm which are defined by the following equation

d̃jm = µ∗jmyjm (10)

where the d̃jm is the estimated data symbol in the m-th user in the j-th cell. For deriving
the MSE, let us introduce ẽjm as

ẽjm =

(
µ∗jm

L∑
i=1

K∑
n=1

gHijmωindin

√
α (θBS,i)+njm − djm

)
. (11)

Then we can write MSE in terms of the receiving filter coefficients and channel parameters
as

ejm = E
{(
d̃jm − djm

)(
d̃jm − djm

)∗}
= E

{
ẽjmẽ

∗
jm

}
= |µjm|2

(
L∑
i=1

K∑
n=1

∣∣gHijmωin∣∣2α (θBS,i)+1

)
−µ∗jmgHjjmωjm

√
α (θBS,j)− µjmωHjmgjjm

√
α (θBS,j) + 1.

(12)
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In the sequel, we will use the following lemma [21]:

Lemma 1. Maximum value of function f (S) = −Tr (SE) + log (det (S)) + d which is the
solution of following optimization problem. The solution of

max
S∈Cd×d,S�0

f (S)

exists at
Sopt = E−1

and the optimum value is
f
(
Sopt

)
= log

(
det
(
E−1

))
.

By using lemma 1, the optimization problem in (9) can be rewritten as

max
W ,U ,S,θ

H (W ,U ,S,θ)

subject to
K∑
m=1

‖ωjm‖2 6 P ∀j, j = 1, 2, ..., L

01×L ≺ θ ≺ 90o × [1, 1, ..., 1]1×L (13)

where new objective function H (W ,U ,S,θ) and set of filter variables U slack variables S
are defined as

H (W ,U ,S,θ) =
∑
j,m

(−bjmejmsjm + bjm log (sjm))

+
∑
j,m

(
bjm − ηξ‖ωjm‖2

)
U = {µ1, µ2, ..., µL} and µj = {µj1, µj2, ..., µjK}
S = {s1, s2, ..., sL} and sj = {sj1, sj2, ..., sjK} (14)
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Now by substituting (12) in (13), we get

max
W j ,θj

(−
K∑
m=1

L∑
i=1

K∑
n=1

binsin|µin|2
∣∣gHjinωjm∣∣2α (θBS,j)

+
K∑
m=1

bjmsjmµ
∗
jmg

H
jjmωjm

√
α (θBS,j) )

+(
K∑
m=1

bjmsjmµjmω
H
jmgjjm

√
α (θBS,j)− ηξ‖ωjm‖2 )

subject to
K∑
m=1

‖ωjm‖2 6 P ∀j, j = 1, 2, ..., L

01×L ≺ θ ≺ 90o × [1, 1, ..., 1]1×L

(15)

By substituting (12) in (13) and (14), the optimization problem of (13) decouples among
the BSs and each BS must solve its own problem. However, sharing of filter coefficients and
slack variables through backhaul links is still necessary.

Theorem 1. For each value of W and θ, the optimum values of U and S which maximizes
(15) are

µoptjm =
gHjjmωjm

√
α (θBS,j)

L∑
i=1

K∑
n=1

∣∣gHijmωin∣∣2√α (θBS,i)+1

1

êjm
= 1−

∣∣gHjjmωjm∣∣2α (θBS,j)
L∑
i=1

K∑
n=1

∣∣gHijmωin∣∣2√α (θBS,i)+1

soptjm =
1

êjm
(16)

Proof. Similar to lemma 1, to find the optimum value, two equations ∂H(W ,U ,S,θ)
∂sj,k

= 0 and
∂H(W ,U ,S,θ)

∂µ∗j,k
= 0 must be solved which results in (16).

Clearly as Theorem 1 states, if we have optimum values of W and θ then the optimum
values of U and S are derived. The optimization problem of (13) is equivalant to finding
the optimum values of W and θ in (15). Now with help of Theorem 1, we aim to solve (15)
using its dual problem (Lagrangian method) and block coordinate descent method.
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Now we construct Lagrangian dual problem as

L (W j, λj, θBS,j) =

−
K∑
m=1

(
L∑
i=1

K∑
n=1

binsin|µin|2
∣∣gHjinωjm∣∣2α (θBS,j)− bjmsjmµ∗jmgHjjmωjm

√
α (θBS,j)

)

+

(
K∑
m=1

(
bjmsjmµjmω

H
jmgjjm

√
α (θBS,j)− ηζ‖ωjm‖2

))
− λj

(
K∑
m=1

‖ωjm‖2 − P

)
.

(17)

Using these two equalities [22]

∂‖ωjm‖2

∂ωjm
= 2ωjm,

∂
∣∣gHjinωjm∣∣2
∂ωjm

=
∂
(
ωHjmgjing

H
jinωjm

)
∂ωjm

= 2gjing
H
jinωjm

and also using KKT conditions, the optimum solution of (17) for the beamforming vectors
at a given θ can be calculated as follows

∂L (W j, λj, θj)

∂ωjm
= −2

L∑
i=1

K∑
n=1

binsin|µin|2gjingHjinωjmα (θBS−j)

+ 2bjmsjmµjmgjjm

√
α (θBS−j)− 2ηζωjm = 0

⇒

(
L∑
i=1

K∑
n=1

binsin|µin|2gjingHjinα (θBS−j) + ηζIM

)
ωjm = bjmsjmµjmgjjm

√
α (θBS−j).

(18)

This yields a solution as follows

∂L (W j, λj, θj)

∂ωjm
= 0

⇒ ωjm = bjmsjmµjm(Aj + λjIM)†gjjm

√
α (θBS,j)

⇒ ωjm = bjmsjmµjm
(
Aj + λ∗jIM

)†
gjjm

√
α (θBS,j) (19)

where Aj =
L∑
i=1

K∑
n=1

binsin|µin|2gjingHjinα (θBS,j) + ηζIM . In (19) the optimum value of La-

grangian’s multiplier λj must be found through one dimensional search which is a common
method in optimization via dual problem [16, 20]. We denote this optimum value with λ∗j .
As stated earlier, we see in (19) that optimum values of beamforming vectors are dependent
on both channel gains and users’ elevations. Therefore finding optimum value of the tilt
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angle is inevitable. Unfortunately (17) is a non-convex function in terms of the tilt angle.
One way to find the optimum value of the tilt angle is through one dimensional search but
this induces a heavy computational task on network. In the next section a new algorithm is
proposed for reducing the complexity significantly.

4. Clustering Algorithm

There are some local maximums for θ in the maximization problem (17). Finding the
global maximum is possible by searching feasible set of tilt angle [θmax, θmin] where θmax and
θmin are the maximum and minimum AoA of the users in the cell, respectively [3, 6, 7, 8].
This approach is reasonable when we optimize an ergodic utility which varies very slowly
with time. However this is not the case in our setup since channel of the users is varying
with time and we need to maximize (17) in each transmission interval. In the following
theorem, we consider reducing this search interval.

Theorem 2. Optimum value of θBS,j in (17) exists in a symmetric interval of length 2 ×
θ3dB√
2.4 ln 10

centered around one of users’ AoA.

Proof. As we know, at the location of maximum of a function, its second derivative is
negative. Furthermore (17) is weighted sum of shifted versions of (1). By taking the second
derivative of (1) with respect to θBS,j, we can find the interval in which the second derivative
of the antenna pattern is negative and hence this interval contains the maximum of (17).
This is due to the fact that only in a specific interval around AoA of each user the second
derivative of (17) is negative. In othe words we have

d2a(θBS)

dθ2BS
= Amax

(
(2.4 ln 10)2

θ43dB
(θBS − θuser)2 −

2.4 ln 10

θ23dB

)

× exp

(
−1.2× (θBS − θuser)2

θ23dB
log210

)
≤ 0

⇒ (2.4 ln 10)2

θ43dB
(θBS − θuser)2 −

2.4 ln 10

θ23dB
≤ 0

⇒ θuser −
θ3dB√

2.4 ln 10
≤ θBS ≤ θuser +

θ3dB√
2.4 ln 10

(20)

Fig. 3 represents this fact for θ3dB = 6◦ and two user case with equal gains in which the
array’s maximum gain is normalized to unity. Instead of searching whole feasible set for θ,
only intervals spanned by clusters will be investigated. Clustering algorithm is presented as
follow:

Outputs of algorithm (2) are tilt angle spanning interval of each cluster. It is enough
to investigate spanning interval of clusters instead of whole feasible region of the tilt angle
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Algorithm 2 Clustering Algorithm

1: Sort angles of users in each cell.

2: Put all users with angle difference less than 2× θ3dB√
2.4 ln 10

in the same cluster.

3: In each cluster users with maximum and minimum AoA represent cluster interval

4: if (a cluster contains just a single user) then only AoA of that user represents that

cluster

to find global maximum of (17) for tilt angle. To further reduce computational task, first
we consider the tilt angle be equal to AoA of users and we choose the AoA of the user that
maximizes (17). We call the user that its AoA maximizes (17) compared to other users as
chosen user and the cluster containing him as chosen cluster. Then global maximum for tilt
angle exists in the chosen. In order to find this global maximum, chosen cluster must be
investigated. with this simplification it is enough to search spanning interval of the chosen
cluster instead of whole feasible set of tilt angle. The overall algorithm for solving (9) is
shown in Algorithm 3 and its flowchart is presented in Fig. 2.

Algorithm 3

chosen user cluster(i) is the i-th angle in the cluster containing chosen user (we examine

each cluster spanning with known steps, for example 0.1◦ steps)

1: Initialize: initialize step counter n = 0, beamforming vectors such that
K∑
m=1

∥∥ωnjm∥∥2 ≤ P ,

filter and slack variables µnjm = 0, snjm = 0, quit threshold δ = 10−3

2: run clustering algorithm and acquire clusters

3: while (
∣∣G (W n,θn)−G

(
W n−1,θn−1

)∣∣ ≥ δ) do

4: (n+ 1)→ n and update filters µnjm using (16)

5: update slack variables snjm using (16)

6: find chosen user (the user that considering its AoA as tilt, maximizes G (W ,θ)

compared to other user) and

7: for (i = 0 to i = length(chosen user cluster)) do

8: θj = chosen user cluster(i)

9: update bemforming vectors ωnjm using (19)

10: update Gnew using (9)

11: if (Gnew > G (W n,θn)) then tiltoptj = possible tiltsj(i) and W opt
j = W n

end for
end while
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Begin

Initialize:

Yes

Initialize:

Run clustering algorithm 
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 using (19)

Yes No
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No

Calculate

End

No

No

Yes

Yes

No

Figure 2: Flowchart of the proposed algorithms.

5. Simulation Results

We consider three cooperative adjacent cells as main interferers, i.e. L = 3. Parameters
of simulations are extracted from [4, 17]. Height of BSs and UEs are hBS = 32m and
hUE = 1.5m, respectively. Cell radius is set to be R = 500m. Channel vector model is
gijm =

√
βijmhijm where hijm is i.i.d. white gaussian random vector that models small

scale fading and large scale fading coefficient βijm =
zijm
dvijm

compromise pathloss part dvijm
with v = 3.8 and shadow fading effect with log-normal random variable zijm with zero mean
and 8 dB standard deviation. The RF-chain power consumption is Pc = 30 dB and BS
site maintenance power consumption is P0 = 40. Power amplifier inefficiency is considered
to be ξ = 1 and all users have identical priority i.e. bjm = 1 ∀j,m. Threshold values for
stopping criteria of algorithms are set to δ = 10−3 and ε = 10−3. Also for taking average
over user configuration and random channel realization, 2500 Monte-Carlo simulations are
done and the results are average of these simulations. Transmit power constraint of the BSs’
is considered to vary in the interval 22 ∼ 50 dBm.
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In Fig. 4 the total instantaneous EE for 3D case and its corresponding 2D case is pre-
sented. As it is expected by increasing the maximum transmit power in the BSs, the EE
increases until it reaches a saturated level and after that by increasing available power the
EE does not show variations. This is due to this fact that in low SNR regime (noise limited
regime) logarithm function grows faster than linear function, thus by increasing transmit
power in BS the EE will increase. On the other hand in high SNR regime (interference lim-
ited regime), logarithm function growth is lower than that of linear function, hence algorithm
will not use the excess transmit power available at the BS and EE converges to a saturated
level. It is observed, the 3D beamforming outperforms conventional 2D beamforming with
isotropic BS’s antenna array gain in the vertical plane.

Moreover by increasing the transmit power of the BSs, 3D beamforming performance
gain over 2D beamforming increases as shown in Fig. 5. This shows the potential of the
3D beamforming method for mitigating intercell interference. After increasing the available
transmit power to the level needed to overcome noise (crossing noise limited regime), limiting
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Figure 3: Clustering users based on their angle of arrival difference. (For example with θ3dB = 6◦ clustering
interval length will be θ3dB√

2.4 ln 10
≈ 5.3 )
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Figure 4: Comparison of 3D beamforming and conventional 2D beamforming for M = 4 and M = 8 number
of antennas.

factor will become interference. The 3D beamforming gain over 2D beamforming increases
because of the ability of interference mitigation. In other words 3D beamforming is more
robust to intercell interference compared with 2D beamforming.

Finally Fig. 6 shows performance comparison of the proposed clustering algorithm and
exhaustive search over tilt angle feasible region. The exhaustive search algorithm solves
the beamforming problem by exploring over all possible values of tilt angles in all the BSs
which results an exponential complexity. By contrast, the clustering algorithm reduces the
complexity of the searches by limiting the interval of possible tilt angles in the BSs. In fact,
in the clustering algorithm only some candidate angles are investigated.

We see that their performance is almost equal and a little gap appears between perfor-
mances in high transmit power region. This is due to approximation considered in clustering
algorithm when the chosen cluster contains only one user. The optimum tilt angle in clus-
tering algorithm in this case is considered to be tilt angle of the chosen user, while in fact
the optimum tilt angle can be around this user and an interval around this user should be
searched. But as we see this approximation causes a little gap compared to the optimum
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value but the computational complexity gain is considerable. It is notable that the per-
formance gap appears in the interference limited regime where objective function is more
sensitive to deviations from the optimum value while in noise limited regime sensitivity to
deviations is low and hence there is no gap and no performance loss between two strategies.

Fig. 7 shows the effect of increasing the number of the users in each cell. As it can be
seen, by increasing the number of the users total EE will increase in system. This implies
that by adding more users, interference management capability of proposed method over
the 2D technique will increase. However it is worth mentioning that by increasing the
number of cells, performance gain will shrink. This is due to the fact that the number of
degrees of freedom is controlled by the number of antennas and increasing number of cells
only increases interference. Hence the system performance degrades. But this performance
loss is insignificant due to sectoring cells and side lobe level loss of antenna patterns which
heavily suppresses interference power.
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Figure 5: Gain of 3D beamforming over 2D beamforming expressed in percents for different values of transmit
power available in BS.
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Figure 6: Performance comparison between clustering algorithm and exhaustive search over tilt angle of BS.

6. Conclusion

Downlink transmission in a cellular network with hexagonal shaped cells that simulta-
neously employs beamforming and tilt angle adaptation of the BSs’ antenna array has been
investigated. First by employing fractional programming and introducing new variables,
problem of maximizing total instantaneous EE with respect to beamforming vectors and tilt
angle of BSs’ of the network has been converted into multiple tractable problems which are
distributed between BSs. Closed form solution of the optimum beamforming vectors have
been found which are functions of channel gain of users, users’ angle of arrival and tilt angle
of the BS. Then finding optimum tilt angle has been investigated which is a non-convex
problem and has multiple maximums. To overcome this difficulty, the optimum tilt angle
has been found efficiently using a clustering algorithm. This algorithm classifies users based
on their angle of arrival to the BS’s antenna array and then aims the array’s beam to a
specific cluster that maximizes total instantaneous EE of the network. The clustering algo-
rithm has significantly less complexity compared to exhaustive search over tilt angle but its
performance is near the same as exhaustive search.
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